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Abstract

A measurement of the top quark pair production (tt) cross section in proton-proton
collisions at the centre-of-mass energy of 8 TeV is presented using data collected with
the CMS detector at the LHC, corresponding to an integrated luminosity of 19.6 fb−1.
This analysis is performed in the tt decay channels with one isolated, high transverse
momentum electron or muon and at least four jets, at least one of which is required to
be identified as originating from hadronization of a b quark. The calibration of the jet
energy scale and the efficiency of b jet identification are determined from data. The
measured tt cross section is 228.5± 3.8 (stat)± 13.7 (syst)± 6.0 (lumi) pb. This mea-
surement is compared with an analysis of 7 TeV data, corresponding to an integrated
luminosity of 5.0 fb−1, to determine the ratio of 8 TeV to 7 TeV cross sections, which
is found to be 1.43± 0.04 (stat)± 0.07 (syst)± 0.05 (lumi). The measurements are in
agreement with QCD predictions up to next-to-next-to-leading order.
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1 Introduction
Top quarks are abundantly produced at the CERN LHC. The predicted top quark pair pro-
duction cross section (σtt ) in proton-proton (pp) collisions, at a centre-of-mass energy of 8 TeV,
is 253 pb, with theoretical uncertainties at the level of 5–6%. A precise measurement of σtt is
therefore an important test of perturbative quantum chromodynamics (QCD) at high energies.
Furthermore, precision tt cross section measurements can be used to constrain the top quark
mass mt and QCD parameters, such as the strong coupling constant αS [1], or the parton distri-
bution functions (PDF) of the proton [2].

The tt production cross section was measured at the LHC at
√

s = 7 and 8 TeV [3–17]. In this
paper, a measurement of the tt production cross section in the channel with one high trans-
verse momentum lepton (muon or electron) and jets is presented using the 2012 data set at√

s = 8 TeV, collected by the CMS experiment at the LHC and corresponding to an integrated
luminosity of 19.6 fb−1. To measure the cross section ratio, where several systematic uncer-
tainties cancel, the 2011 data set at

√
s = 7 TeV, corresponding to an integrated luminosity of

5.0 fb−1, has been concurrently analyzed with a similar strategy to the one developed for the
cross section measurement at 8 TeV. The new measurement agrees very well with the previ-
ously published CMS result [4]. The larger statistical uncertainty of the present measurement
with respect to the previous one is due to the simultaneous determination of the b tagging
efficiency, as discussed in Section 6.

In the standard model, top quarks are predominantly produced in pairs via the strong inter-
action and decay almost exclusively into a W boson and a b quark. The event signature is
determined by the subsequent decays of the two W bosons. This analysis uses tt semileptonic
decays into muons or electrons, where one of the W bosons decays into two quarks and the
other to a charged lepton and a neutrino. The W boson decays into tau leptons are not specif-
ically selected. The top quark decaying into a b quark and a leptonically decaying W boson is
defined in the following as the “leptonic top quark”, while the other top quark is referred to as
“hadronic”. For the tt signal two of the four jets result from the hadronization of the b and b
quarks (b jets), thus b tagging algorithms are employed for the identification of b jets in order
to improve the purity of the tt candidate sample.

The technique for extracting the tt cross section consists of a binned log-likelihood fit of signal
and background to the distribution of a discriminant variable in data showing a good separa-
tion between signal and background: the invariant mass of the b jet of the leptonic top quark
and the lepton (M`b). The mass of the three-jet combination with the highest transverse mo-
mentum in the event (M3) is used as a discriminant in an alternative analysis. The M`b variable
is related to the leptonic top quark mass, while M3 is a measure for the hadronic top quark
mass. These quantities provide a good separation between signal and background processes.

The analysis employs calibration techniques to reduce the experimental uncertainties related
to b tagging efficiencies and jet energy scale (JES). The tt topology is reconstructed using a
jet sorting algorithm in which the b jet originating from the leptonic top quark is identified.
The b tagging efficiency is then determined from a b-enriched sample, in the mass region of
the leptonic top quark, correcting for the contamination from non-b jets [18, 19]. The rate of
jets that are wrongly tagged as originating from a b quark is also measured using data [20].
Independently, the JES is determined from the hadronically decaying W boson in the event by
correcting the reconstructed mass of the W boson in the simulation to that determined from the
data.

The results of the cross section measurements are given both for the visible region, i.e. for the
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phase space corresponding to the event selection, and for the full phase space. The visible
region is defined by requiring the presence in the simulation of exactly one charged lepton, one
neutrino, and at least four jets within the selection criteria, as presented in Section 5.

This paper is structured as follows: after a description of the CMS detector (see Section 2),
the data and the simulated samples are discussed in Section 3, while Section 4 is dedicated
to the event selection. The analysis technique and the impact of the systematic uncertainties
are addressed in Section 5 and in Section 6. The results of the cross section measurements are
discussed in Section 7. Section 8 describes the alternative analysis based on M3, followed by a
summary in Section 9.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal di-
ameter, providing an axial magnetic field of 3.8 T. Within the solenoidal field volume are a
silicon pixel and strip tracker, which measures charged particle trajectories in the pseudora-
pidity range |η| < 2.5. Also within the field volume, the silicon detectors are surrounded
by a lead tungstate crystal electromagnetic calorimeter (|η| < 3.0) and a brass and scintillator
hadron calorimeter (|η| < 5.0) that provide high-resolution energy and direction measurements
of electrons and hadronic jets. Muons are measured in gas-ionization detectors embedded in
the steel magnetic flux-return yoke outside the solenoid. The muon detection systems provide
muon detection in the range |η| < 2.4. A two-level trigger system selects the pp collision events
for use in physics analysis. A more detailed description of the CMS detector, together with a
definition of the coordinate system used and the relevant kinematic variables, can be found
elsewhere [21].

3 Data and simulation
The cross section measurement is performed using the 8 TeV pp collisions recorded by the CMS
experiment in 2012, corresponding to an integrated luminosity of 19.6± 0.5 fb−1 [22], and the
2011 data set at

√
s = 7 TeV, corresponding to an integrated luminosity of 5.0± 0.2 fb−1 [23].

The tt events are simulated using the Monte Carlo (MC) event generators MADGRAPH (version
5.1.1.0) [24, 25] and POWHEG (v1.0 r1380) [26, 27]. In MADGRAPH the top quark pairs are gen-
erated at leading order (LO) with up to three additional high-pT jets. The POWHEG generator
implements matrix elements to next-to-leading order (NLO) in perturbative QCD, with up to
one additional jet. The mass of the top quark is set to 172.5 GeV. The PYTHIA (v.6.426) [28] and
HERWIG (v.6.520) [29] generators are used to model the parton showering. The PYTHIA shower
matching is done using the MLM prescription [30, 31].

The top quark pair production cross section values are predicted to be 177.3+4.6
−6.0 (scale) ±

9.0 (PDF+αS)pb at 7 TeV and 252.9+6.4
−8.6 (scale)± 11.7 (PDF+αS)pb at 8 TeV, as calculated with

the TOP++ 2.0 program to next-to-next-to-leading order (NNLO) in perturbative QCD, includ-
ing soft-gluon resummation to next-to-next-to-leading logarithmic (NNLL) order (Ref. [32]
and references therein), and assuming mt = 172.5 GeV. The first uncertainty comes from
the independent variation of the factorization and renormalization scales, while the second
one is associated to variations in the PDF and αS following the PDF4LHC prescription with
the MSTW2008 68% confidence level NNLO, CT10 NNLO, and NNPDF2.3 5f FFN PDF sets
(Refs. [33, 34] and references therein, and Refs. [35, 36]).



3

The top quark transverse momentum is reweighted in samples simulated with MADGRAPH

and POWHEG, when interfaced to PYTHIA, in order to better describe the pT distribution ob-
served in the data. Based on a study of differential distributions [37, 38] in the top quark
transverse momentum, an event weight w =

√
w1 · w2 is applied, where the weights wi of the

two top quarks are given as a function of the generated top quark pT values: wi = exp(0.199−
0.00166 pi

T/GeV) at 7 TeV, and wi = exp(0.156− 0.00137 pi
T/GeV) at 8 TeV. This reweighting is

only applied to the phase space corresponding to the experimental selection.

The W/Z+jets events, i.e. the associated production of W/Z vector bosons with jets, with lep-
tonic decays of the W/Z bosons, constitute the largest background. These are also simulated
using MADGRAPH with matrix elements corresponding to at least one jet and up to four jets.
The W/Z+jets events are generated inclusively with respect to the jet flavour. Drell–Yan pro-
duction of charged leptons is generated for dilepton invariant masses above 50 GeV, as those
events constitute the relevant background in the phase space of this analysis. The contribu-
tion from Drell-Yan events with dilepton invariant masses between 10 and 50 GeV is negligible.
Single top quark production is simulated with POWHEG. The background processes are nor-
malized to NLO and NNLO cross section calculations [39–43], with the exception of the QCD
multijet background, for which the normalization is obtained from data in the M3 analysis (see
Section 8). In the M`b analysis the multijet background is reduced to a negligible fraction (see
Section 4) and thus not considered further.

Pileup signals, i.e. extra activity due to additional pp interactions in the same bunch crossing,
are incorporated by simulating additional interactions with a multiplicity matching the one
inferred from data. The CMS detector response is modeled using GEANT4 [44]. The simulated
events are processed by the same reconstruction software as the collision data.

4 Reconstruction and event selection
This analysis focuses on the selection of tt semileptonic decays in the muon and electron chan-
nels, with similar selection requirements applied for the two channels. Muons, electrons, pho-
tons, and neutral and charged hadrons are reconstructed and identified by the CMS particle-
flow (PF) algorithm [45, 46]. The energy of muons is obtained from the corresponding track
momentum using the combined information of the silicon tracker and the muon system [47].
The energy of electrons is determined from a combination of the track momentum at the pri-
mary collision vertex, the corresponding cluster energy in the electromagnetic calorimeter, and
the energy sum of all bremsstrahlung photons associated to the track [48]. The vertex with the
largest p2

T sum of the tracks associated to it is chosen as primary vertex.

Candidate tt events are first accepted by dedicated triggers requiring at least one muon or elec-
tron. Lepton isolation requirements are applied to improve the purity of the selected sample.
At the trigger level the relative muon isolation, the sum of transverse momenta of other parti-
cles in a cone of size ∆R =

√
(∆φ)2 + (∆η)2 < 0.4 around the direction of the candidate muon

divided by the muon transverse momentum, is required to be less than 0.2. Similarly, for elec-
trons, the corresponding requirement is less than 0.3 in a cone of size 0.3. Events with a muon
in the final state are triggered on the presence of a muon candidate with pT > 24 GeV and
|η| < 2.1. Events with an electron candidate with |η| < 2.5 are accepted by triggers requiring
an electron with pT > 27 GeV.

Tighter pT requirements are applied in the offline selections. Muons are required to have a
good quality [47] track with pT > 25 GeV and |η| < 2.1. Electrons are identified using a com-
bination of the shower shape information and track-electromagnetic cluster matching [48], and
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are required to have pT > 32 GeV and |η| < 2.5, with the exclusion of the transition region
between the barrel and endcap electromagnetic calorimeter, 1.44 < |η| < 1.57. Electrons com-
ing from photon conversions are vetoed. Correction factors for trigger and lepton identifica-
tion efficiencies have been determined with a tag-and-probe method [49] from data/simulation
comparison as a function of the lepton pT and η, and are applied to the simulation.

Signal events are required to have at least one good pp interaction vertex [50] and exactly one
muon or electron with an origin consistent with the reconstructed vertex. Since the lepton
from the W boson decay is expected to be isolated from other activity in the event, isolation re-
quirements are applied. A relative isolation is defined as Irel = (Icharged + Iphoton + Ineutral)/pT,
where pT is the transverse momentum of the lepton and Icharged, Iphoton, and Ineutral are the
sums of the transverse energies of the charged particles, the photons, and the neutral particles
not identified as photons, in a cone ∆R < 0.4 (0.3) for muons (electrons) around the lepton
direction, excluding the lepton itself. The relative isolation Irel is required to be less than 0.12
for muons and 0.10 for electrons. Events with more than one muon or electron candidate with
relaxed requirements are vetoed in order to reject Z boson or tt decays into dileptons.

The missing energy in the transverse plane (Emiss
T ) is defined as the magnitude of the projection

on the plane perpendicular to the beams of the vector sum of the momenta of all PF candidates.
It is required to be larger than 30 GeV in the muon channel and larger than 40 GeV in the electron
channel, because of the larger multijet background.

Jets are clustered from the charged and neutral particles reconstructed with the PF algorithm,
using the anti-kT jet algorithm [51] with a distance parameter of 0.5. Particles identified as
isolated muons and electrons are not used in the jet clustering. Jet energies are corrected for
nonlinearities due to different responses in the calorimeters and for the differences between
measured and simulated responses [52]. Furthermore, to account for extra activity within a
jet cone due to pileup, jet energies are corrected [45, 46] for charged hadrons that belong to a
vertex other than the signal primary vertex, and for the amount of pileup expected in the jet
area from neutral jet constituents.

An additional global calibration factor of the jet energy scale is obtained by fitting the W boson
mass distribution in the data and in the simulation. The scale factor is determined as the ratio
of the W boson mass reconstructed from non-b-tagged jet pairs in data and in the simulation.
This scale correction is applied in the simulation to all jets before the selection requirements
are implemented. It largely reduces the systematic uncertainty related to the jet energy scale,
discussed in Section 6.

At least four jets are required with pT > 40 GeV and |η| < 2.5. To reduce contamination from
background processes, at least one of the jets has to be identified as a b jet. The b tagging
algorithm used is the “combined secondary vertex” (CSV) algorithm at the medium working
point [18, 19], corresponding to an efficiency of about 1% for light jets (mistag rate) and an
efficiency for b jets in the range 60–70% depending on the jet pT and pseudorapidity. Figure 1
shows kinematic distributions after applying the b tagging requirement. Good agreement be-
tween data and simulation is observed.

The M`b analysis uses control samples in data for the estimation of the b tagging efficiency, as
described in Refs. [18–20]. Among the four leading jets, three are assigned to the hadronically
decaying top quark through a χ2 sorting algorithm using top quark and W boson mass con-
straints. The remaining fourth jet is the b jet candidate assigned to the leptonically decaying
top quark. The b tagging algorithm is only applied to this b jet candidate.

Owing to differences in the triggers and in the centre-of-mass energies, in the 7 TeV analysis
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slightly different selection criteria are applied on the charged-lepton pT and Emiss
T . The muon

transverse momentum is required to be larger than 26 GeV, while the electron pT has to be
larger than 30 GeV. No explicit Emiss

T requirement is needed in the muon channel. Events with
Emiss

T > 30 GeV are selected in the electron channel.
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Figure 1: Transverse momentum distributions of the first- and second-leading jet (top), the
muon and Emiss

T distribution (bottom) for all relevant processes in the muon+jets channel with
the requirement of at least one b-tagged jet. The simulation is normalized to the standard
model cross section values and pT-reweighting is applied to the tt contribution. The multi-
jet background is negligible and not shown. The distributions are already corrected for the
b tagging efficiency scale factor. The hashed area shows the uncertainty in the luminosity mea-
surement and the b tagging systematic uncertainty. The ratio between data and simulation is
shown in the lower panels for bins with non-zero entries.

5 Visible and total cross section measurements
The tt visible (σvis

tt ) and total (σtt ) production cross sections are extracted from the number of tt
events observed in the data using the equations

σvis
tt =

Ntt

L εtt
, σtt =

σvis
tt

A
, (1)

where Ntt is the number of selected tt events (including both signal events from the semilep-
tonic channel considered and events from other decay channels), L is the integrated luminosity,
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A is the tt acceptance, and εtt is the tt selection efficiency within the acceptance requirements
outlined in the next section. Results are presented for both the visible and total cross section, in
order to separate experimental uncertainties from theoretical assumptions as much as possible.

The number of tt events is determined with a binned maximum-likelihood fit of distributions
(templates), describing signal and background processes, to the data sample passing the final
selection, by fitting M`b, the invariant mass distribution of the b jet and the lepton.

One template is used for tt events (both for the tt signal events and the other tt events passing
the selection criteria) and one template for all background processes (W/Z+jets and single top
quark production). Figure 2 shows the result for the fit to the data distributions in the muon
and electron channels.
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Figure 2: Distributions of the lepton-jet mass in the muon+jets (left) and electron+jets (right)
channels, rescaled to the fit results.

5.1 Acceptance

The tt acceptance A corresponding to the visible phase space depends on the theoretical model
and it is determined at the generator level by requiring the presence of exactly one charged
lepton, one neutrino, and at least four jets, passing pT and |η| selection criteria similar to the
ones delineated in Section 4. For simplicity a single acceptance definition, corresponding to the
tightest selection criteria, is used for both channels at each centre-of-mass energy: exactly one
muon or electron with pT > 32 GeV and |η| < 2.1, one neutrino with pT > 40 GeV, and at least
four jets with pT > 40 GeV and |η| < 2.5.

The acceptance values include contributions from other tt decay channels, in particular from
the dilepton channel, at the level of about 9%.

The acceptance values are provided in Table 1 for the two generators used in this analysis,
MADGRAPH and POWHEG. The acceptance values are in agreement at the 1–2% level at 8 TeV
and at better than 5% at 7 TeV. This different level of agreement is due to the fact that the
common acceptance definition described above corresponds the tightest pT criteria, i.e. to the
the pT requirements of the electron channel at

√
s = 8 TeV. The reweighted acceptance is

determined as the number of reweighted tt events in the visible phase space, i.e. the sum of
the weights, divided by the total number of (non-reweighted) tt events.

The statistical uncertainty in the acceptance calculations is below 3%. The theoretical systematic
uncertainties due to variations of the PDFs or of the matching thresholds are in the range 0.1–
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0.2%. Variation of the factorization and renormalization scale induces a variation of up to 2%
in the acceptance. Those variations are already included in the systematic uncertainties quoted
in Section 6.

In the following, top quark pT-reweighting [37, 38] is always applied to the visible phase space
as it provides a better agreement between data and simulation. On the other hand, given that
the event weights were only determined in the phase space corresponding to the experimental
selection, they have not been used for the extrapolation to the total cross section. Therefore, the
non-reweighted acceptance is used to determine the total cross section. However, rescaling by
the ratio of the values provided in Table 1 would allow a determination of the total cross section
with the reweighted acceptance. The visible cross section does not depend on the acceptance A.

Table 1: Average acceptance values for the muon and electron channels obtained with MAD-
GRAPH and POWHEG at

√
s = 7 and 8 TeV, without and with top quark pT-reweighting applied.

The statistical uncertainty is 0.0004, i.e. below 3%. The theoretical uncertainties are at the level
of 2%, as discussed in the text.

Generator
A (
√

s = 7 TeV) A (
√

s = 8 TeV)
no rew. with rew. no rew. with rew.

MADGRAPH 0.0158 0.0156 0.0166 0.0162
POWHEG 0.0151 0.0149 0.0163 0.0161

5.2 Selection efficiency

The selection efficiency within the acceptance, εtt , is reported in Table 2. It is determined from
the pT-reweighted MADGRAPH simulated sample as the number of events passing the selection
criteria outlined in Section 4, over the number of events passing the phase space requirements
defined above. The selection efficiency includes the effects of trigger requirements, lepton and
jet identification criteria, and b tagging efficiency, which is determined from data. A signal
selection efficiency of 32% in the muon channel and 21% in the electron channel is determined.
Compatible values (37% and 22%, respectively) are obtained at

√
s = 7 TeV. For the muon

channel the common acceptance requirements used for both channels are tighter than the se-
lection requirements, thus the muon channel efficiency is significantly larger than the electron
channel efficiency. The tt selection efficiency, Aεtt , is the number of selected tt events out of all
produced tt pairs, in all decay channels.

Table 2: Signal selection efficiencies, at
√

s = 8 TeV, determined from simulation using MAD-
GRAPH. The non-reweighted acceptance from Table 1 is used. The relative statistical uncer-
tainty on these numbers is below 3%.

Channel εtt (
√

s = 7 TeV) Aεtt (
√

s = 7 TeV) εtt (
√

s = 8 TeV) Aεtt (
√

s = 8 TeV)

µ+jets 37% 0.58% 32% 0.53%
e+jets 22% 0.36% 21% 0.35%

6 Systematic uncertainties
Systematic uncertainties are determined by varying each source within its estimated uncer-
tainty and by propagating the variation to the cross section measurement. Template shapes
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and signal efficiencies are varied together according to the systematic uncertainty considered.
The uncertainty is given by the shift in the fitted cross section and is cross-checked by repeating
its estimation with pseudo-experiments using simulation. The systematically varied template
shapes are fit to pseudo-data generated using the nominal template shapes and normalizations.
Most systematic uncertainties, except the ones related to b tagging and to the estimation of the
multijet background, are common to both the M`b and the M3 measurements.

The effect of uncertainties in the JES is evaluated by varying the JES up and down within the
pT- and η-dependent uncertainties given in Ref. [52]. The final JES of the simulation is matched
to that in data by applying an additional global correction factor α to all jet momenta before
selection. The α calibration values are individually determined for each sample. In addition to
the selection described in Section 4, two b-tagged jets are required in order to increase the signal
purity. The mass of the hadronically decaying W boson is reconstructed as the dijet invariant
mass from all combinations of non b-tagged jets. The dijet invariant mass distributions are
fitted in data and in simulation with a function describing the W boson signal peak and the
dijet combinatorial background. The α values are determined as the ratios of the fitted W boson
masses in data and in simulation. In the M`b analysis α = 1.011± 0.004 is obtained with the
nominal samples both in the muon and electron channels, with variations of the order of±1.5%
for the samples with down and up variations of the JES. The same values are determined by
the M3 analysis. This additional calibration reduces the size of the JES systematic uncertainty
by approximately 60%. The JES uncertainty, reported in Table 3, consists of several sources, all
propagated individually. Details of the individual contributions are explained in [53].

Table 3: Components (in %) of the JES uncertainty at 8 TeV in the muon and electron channels.
The correlation coefficients used in their combination are also shown.

Source µ+jets e+jets Correlation
Absolute scale ±0.33 ±0.40 0.0
Global jet scale factor ±0.59 ±0.39 0.0
Radiation modeling ±0.46 ±0.41 1.0
Relative pT extrapolation ±0.67 ±0.57 1.0
Parton flavour mixture ±1.84 ±1.79 1.0
b jet fragmentation ±0.50 ±0.46 1.0
B jet semileptonic decay fraction ±0.11 ±0.16 1.0
High-pT extrapolation ±0.18 ±0.23 1.0
High-pT single-jet response ±0.21 ±0.27 1.0
Pileup random-cone simulation ±0.35 ±0.31 1.0
Time-dependent detector effects ±0.17 ±0.24 1.0
Total JES ±2.23 ±2.13 0.9

The impact of the jet energy resolution (JER) is estimated by applying η-dependent variations
with an average of ±10%. The JES and JER variations are propagated to the Emiss

T . In addi-
tion, the contribution to Emiss

T arising from energy depositions not contained in jets is varied
by ±10% [52]. The uncertainty related to the pileup modeling is determined by propagating
a ±5% variation [54] to the central value of the inelastic cross section. Variations in the com-
position of the main background processes, W+jets and Z+jets, are conservatively evaluated
by varying independently their cross sections by ±30%. The resulting effects are added in
quadrature. The variation of the single top quark background gives a negligible contribution.
The trigger efficiency and lepton identification correction factors are determined with a tag-
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and-probe method [49] in dilepton events and are varied within their pT- and η-dependent
uncertainties.

Uncertainties from the b tagging efficiency and mistag rate are evaluated in the M3 analysis
by varying the correction factors within their uncertainties [18, 19] quoted in Section 8. In the
M`b analysis, on the other hand, the b tagging efficiency for b jets is measured from data, using
the technique described in Refs. [18–20], on the same selected event sample as that for the cross
section determination, but before b tagging. The M`b variable is used not only as a cross section
estimator, but also as a b tagging discriminator. The statistical and systematic uncertainties in
the b tagging and mistag efficiencies are propagated into the statistical and systematic uncer-
tainties in the cross section measurements. For this reason the statistical uncertainty obtained
by the M`b analysis is larger than the one of the M3 analysis. A systematic uncertainty is as-
signed to the choice, based on simulation, of the b-enriched (for M`b values below 140 GeV)
and of the b-depleted (for M`b in the range 140–240 GeV) regions, by shifting the windows
by ±30 GeV. Since the b tagging efficiency and mistag rate are derived from data and since
they are re-determined when evaluating the effect of the various systematic uncertainties, no
additional uncertainties are included. The method is shown [18–20] to be stable for different
b tagging algorithms and working points.

Theoretical uncertainties are taken from detailed studies performed on simulated samples.
They include the common factorization and renormalization scales, which are varied by a fac-
tor of 1/4 and 4 from the default value equal to the Q2 for the tt or W/Z+jet events. The effect
of the jet-parton matching threshold on tt and W+jets events is studied by varying the thresh-
old used for matching the matrix element level to the particles created in the parton showering
by a factor of 0.5 or 2. Uncertainties from the choice of PDF are evaluated by using the Hessian
method [55] with the parameters of the CTEQ6.6 PDF set [56]. Other PDF sets yield very sim-
ilar uncertainties. The PDFs and their uncertainties are determined from a fit to collision data
yielding the Hessian matrix. Each of the 22 eigenvectors obtained by diagonalizing the matrix
is varied up and down within its uncertainties. The differences with respect to the nominal pre-
diction are determined independently for each eigenvector and are added in quadrature. The
systematic uncertainty due to the top quark pT-reweighting procedure described in Section 3 is
evaluated as the difference with respect to the measurement obtained with the non-reweighted
sample. Only the variation due to the template shape is considered, as the correction is meant
to modify the shape only.

A “signal modeling” uncertainty is attributed to the choice of the generators. It comprises
changes in matrix element and parton shower implementation. The effect of the matrix element
generator is evaluated by using POWHEG (instead of MADGRAPH) interfaced to PYTHIA, while
the parton shower modeling is evaluated with POWHEG and HERWIG instead of POWHEG and
PYTHIA. For 7 TeV the same values determined for 8 TeV are used. As discussed in Section 7,
the “signal modeling” uncertainty is symmetrized by taking the larger of the two contributions
(±4.4%).

An uncertainty of 2.6% [22] (2.2% [23]) is assigned to the determination of the 2012 (2011) in-
tegrated luminosity. Tables 4 and 5 provide an overview of the contributions to the systematic
uncertainty on the combined cross section measurements in the M`b measurements at 7 and
8 TeV.
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Table 4: Overview of the systematic uncertainties in the measurement of the tt cross sections
at 8 TeV, both for the total and the visible cross sections. For the “signal modeling” uncertainty
the larger between the matrix element (ME) and parton shower (PS) uncertainties is taken, as
explained in Section 6. The correlations assumed for the combination of the muon and electron
channels are also given.

Systematic uncertainty
8 TeV

µ+jets (%) e+jets (%) corr. comb.(%)
Jet energy scale ±2.2 ±2.1 0.9 ±2.2
Jet energy resolution ±0.8 ±0.9 1.0 ±0.8
Emiss

T unclustered energy ±0.1 ±0.3 1.0 ±0.1
Pileup ±0.5 ±0.4 1.0 ±0.5
Lepton ID / Trigger eff. corrections ±0.4 ±0.5 0.0 ±0.5
b tagging method ±0.3 ±0.7 1.0 ±0.3
Background composition ±0.2 ±0.3 1.0 ±0.2
Factorization/renormalization scales ±1.7 ±2.6 1.0 ±1.7
ME-PS matching threshold ±1.3 ±2.3 1.0 ±1.2
Top quark pT-reweighting ±1.1 ±1.2 1.0 ±1.1
Signal modeling for σtt (σ

vis
tt ) ±4.4(±2.2) ±4.4(±2.4) 1.0 ±4.4(±2.3)

PDF uncertainties ±2.1 ±1.9 1.0 ±2.1
Sum for σtt (σ

vis
tt ) ±6.0(±4.6) ±6.5(±5.4) ±6.0(±4.7)

Integrated luminosity ±2.6 ±2.6 1.0 ±2.6
Total for σtt (σ

vis
tt ) ±6.5(±5.3) ±7.0(±6.0) ±6.5(±5.3)



11

Table 5: Overview of the systematic uncertainties in the measurement of the tt cross sections
at 7 TeV, both for the total and the visible cross sections. For the “signal modeling” uncertainty
the larger between the matrix element (ME) and parton shower (PS) uncertainties is taken, as
explained in Section 6. The correlations assumed for the combination of the muon and electron
channels are also shown.

Systematic uncertainty
7 TeV

µ+jets (%) e+jets (%) corr. comb.(%)
Jet energy scale ±4.8 ±5.2 0.9 ±4.4
Jet energy resolution ±1.4 ±1.1 1.0 ±1.1
Emiss

T unclustered energy < 0.05 ±0.3 1.0 ±0.2
Pileup ±0.4 ±0.6 1.0 ±0.5
Lepton ID / Trigger eff. corrections ±1.4 ±1.7 0.0 ±0.8
b tagging method ±0.5 ±0.6 1.0 ±0.6
Background composition ±0.5 ±0.4 1.0 ±0.5
Factorization/renormalization scales ±3.7 ±0.4 1.0 ±2.1
ME-PS matching threshold ±2.0 ±1.7 1.0 ±1.8
Top quark pT-reweighting ±1.1 ±1.2 1.0 ±1.1
Signal modeling for σtt (σ

vis
tt ) ±4.4(±2.2) ±4.4(±2.4) 1.0 ±4.4(±2.3)

PDF uncertainties ±2.3 ±1.9 1.0 ±2.2
Sum for σtt (σ

vis
tt ) ±8.4(±7.5) ±7.7(±6.8) ±7.4(±6.4)

Integrated luminosity ±2.2 ±2.2 1.0 ±2.2
Total for σtt (σ

vis
tt ) ±8.7(±7.8) ±8.0(±7.1) ±7.7(±6.7)

7 Results and combination
The results in the muon and electron channels, shown in Tables 6 and 7, are in good agreement.
The combination of the channel results is performed using the best linear unbiased estimator
(BLUE) method [57–59]. Asymmetric systematic uncertainties are symmetrized for the use with
BLUE by taking half of the full range, except for the “signal modeling” uncertainty, where the
maximum, 4.4%, is taken for σtt . Full correlation is assumed for all systematic uncertainties
between the two channels, except for lepton identification and trigger uncertainties, which are
assumed to be uncorrelated.

Owing to the additional jet energy calibration from data, a correlation coefficient of 0.9 is ob-
tained for the overall JES uncertainty. This correlation is determined from the correlation coeffi-
cients in Table 3 and it is compatible with the value inferred by comparing the combined result
with and without the additional calibration. Varying the JES correlation coefficient between 0
and 1 has only a minor effect on the combined results. For example, the total cross section at
8 TeV varies by less than 0.5%, and the cross section ratio varies only by approximately 0.1%.
A combination based on the relative statistical precision of the two channels would also yield
compatible results. Variations of the correlations of other experimental systematic uncertainties
have negligible effect on the combined results.

The integrated luminosity and the pileup uncertainties are assumed to be fully correlated be-
tween channels at the same centre-of-mass energy, and uncorrelated between 7 and 8 TeV for
the cross section ratio.
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7.1 Results at
√

s = 8 TeV

The visible cross section obtained from the fit to the M`b distribution, using MADGRAPH signal
templates for mt = 172.5 GeV, is

σvis
tt (combined) = 3.80± 0.06 (stat)± 0.18 (syst)± 0.10 (lumi) pb.

The statistical uncertainty includes the contribution from the simultaneous determination of
the b tagging efficiency (see Section 6). There is excellent agreement with the measurement
of the visible cross section using POWHEG for the efficiency within the kinematic acceptance
selected by this analysis.

Using the acceptance values of Table 1, the visible cross section measurements in the electron
and muon channels are first extrapolated to the full phase space and then combined to obtain
the following total cross section measurement

σtt (combined) = 228.5± 3.8 (stat)± 13.7 (syst)± 6.0 (lumi) pb.

The measurements are in good agreement with the theoretical prediction

σth.
tt (8 TeV) = 252.9+6.4

−8.6(scale)± 11.7(PDF+αS)pb

(see Section 3), for mt = 172.5 GeV.

The BLUE combination yields the following relative weights of the muon and electron chan-
nels, and their correlations, respectively. At 8 TeV they are: 1.07 (1.09), −0.07 (−0.09), with
correlation coefficient 0.88 (0.91) for the total (visible) cross section, while at 7 TeV they are: 0.50
(0.51), 0.50 (0.49), with correlation coefficient 0.71 (0.65). The negative weights of the electron
channel in the combination of the total and visible cross section at 8 TeV depend on the choice of
the JES correlation coefficient (0.9) used in the combination. Smaller JES correlation coefficients
(0.5 for the total cross section and 0.2 for the visible cross section) would yield positive BLUE
weights. The negative weights causes the combined central value, 228.5 pb, to lie outside the
interval of the two individual measurements, as summarized in Tables 6 and 7.

Alternatively, using POWHEG instead of MADGRAPH, the combined total cross section at 8 TeV
shifts by +8.6 pb. The difference, at the level of less than 4%, is mainly ascribed to the different
acceptance for the two generators.

All results are summarized in Tables 6 and 7 for mt = 172.5 GeV. For POWHEG the same relative
systematic uncertainties as determined for MADGRAPH are used.

7.2 Dependence on the top quark mass at
√

s = 8 TeV

Using simulation, the dependence of the measured cross section on the top quark mass is de-
termined to be linear in the mt range from 161.5 to 184.5 GeV. The top quark mass value used
for the central results is 172.5 GeV. The slope values reported in Table 8 can be used to linearly
adjust the channel results to other mass values. For mt = 173.3 GeV [60] the adjusted results of
the two channels yield a combined cross section value

σtt (combined) = 227.4± 3.8 (stat)± 13.7 (syst)± 6.0 (lumi) pb.



7.3 Results at
√

s = 7 TeV and cross section ratio 13

Table 6: Visible cross section measurements at
√

s = 7 and 8 TeV with the reference analysis M`b
and the alternative analysis M3 (described in Section 8). Results obtained for mt = 172.5 GeV
with MADGRAPH and with POWHEG are shown. The uncertainties are in the order: statistical,
systematic, and due to the luminosity determination.

Analysis Generator Channel σvis
tt at

√
s = 8 TeV

M`b MADGRAPH

µ+jets 3.80± 0.06± 0.18± 0.10 pb
e+jets 3.90± 0.07± 0.21± 0.10 pb
Combined 3.80± 0.06± 0.18± 0.10 pb

M`b POWHEG Combined 3.83± 0.06± 0.18± 0.10 pb

M3 MADGRAPH

µ+jets 3.79± 0.05± 0.24± 0.10 pb
e+jets 3.75± 0.04± 0.26± 0.10 pb
Combined 3.78± 0.04± 0.25± 0.10 pb

M3 POWHEG Combined 3.88± 0.05± 0.27± 0.10 pb

Analysis Generator Channel σvis
tt at

√
s = 7 TeV

M`b MADGRAPH

µ+jets 2.48± 0.09± 0.19± 0.06 pb
e+jets 2.62± 0.10± 0.18± 0.06 pb
Combined 2.55± 0.09± 0.18± 0.06 pb

7.3 Results at
√

s = 7 TeV and cross section ratio

At
√

s = 7 TeV the measured cross section, with MADGRAPH, is

σtt (combined) = 161.7± 6.0 (stat)± 12.0 (syst)± 3.6 (lumi) pb.

The measurements are in good agreement with the theoretical expectation

σth.
tt (7 TeV) = 177.3+4.6

−6.0 (scale)± 9.0 (PDF+αS)pb [2, 61]

at 7 TeV, for a top quark mass of 172.5 GeV.

From the measurements of the total cross section at the two centre-of-mass energies, a cross
section ratio R8/7 is determined. In the ratio the experimental uncertainties, which are corre-
lated between the two analyses (at

√
s = 7 or 8 TeV, in each channel) cancel out, leading to an

improved precision in comparison to the individual measurements at 7 or 8 TeV. The ratio is
first determined in the individual muon (1.45± 0.09) and electron (1.41± 0.09) channels and
then combined. The measured ratio is

R8/7 = 1.43± 0.04 (stat)± 0.07 (syst)± 0.05 (lumi). (2)

In the combination of the ratios in the two channels the theoretical uncertainties, and the jet-
related uncertainties are assumed to be 100% correlated, except the JES uncertainty, which is
taken as 90% correlated. The other experimental uncertainties are assumed to be uncorrelated.
The expected cross section ratio, R8/7

th. = 1.429 ± 0.001 (scale) ± 0.004 (PDF) ± 0.001 (ffs) ±
0.001 (mt) [2], is in good agreement with the measurement.

8 Alternative approach at
√

s = 8 TeV using M3

In the M3 analysis similar requirements for the selection of tt semileptonic decays are used,
with slightly different pT-threshold values. Only the differences with respect to the main selec-



14 8 Alternative approach at
√

s = 8 TeV using M3

Table 7: Total cross section measurements at
√

s = 7 and 8 TeV with the reference analysis M`b
and the alternative analysis M3 (described in Section 8). Results obtained for mt = 172.5 GeV
with MADGRAPH and with POWHEG are shown. The uncertainties are in the order: statistical,
systematic, and due to the luminosity determination.

Analysis Generator Channel σtt at
√

s = 8 TeV

M`b MADGRAPH

µ+jets 228.9± 3.4± 13.7± 6.0 pb
e+jets 234.6± 3.9± 15.2± 6.2 pb
Combined 228.5± 3.8± 13.7± 6.0 pb

M`b POWHEG Combined 237.1± 3.9± 14.2± 6.2 pb

M3 MADGRAPH

µ+jets 228.7± 2.6± 19.0± 6.0 pb
e+jets 225.8± 2.4± 19.1± 5.9 pb
Combined 227.1± 2.5± 19.1± 6.0 pb

M3 POWHEG Combined 238.4± 2.8± 20.0± 6.2 pb

Analysis Generator Channel σtt at
√

s = 7 TeV

M`b MADGRAPH

µ+jets 157.7± 5.5± 13.2± 3.4 pb
e+jets 165.8± 6.5± 12.8± 3.6 pb
Combined 161.7± 6.0± 12.0± 3.6 pb

Table 8: Slope values for the muon and electron channels obtained with linear fits to the cross
section values at

√
s = 8 TeV as a function of the top quark mass. The MADGRAPH generator

is used. The change in sign is due to the acceptance A.

Channel Slope (%/GeV) of σvis
tt Slope (%/GeV) of σtt

µ+jets +0.50± 0.06 −0.66± 0.05
e+jets +0.30± 0.04 −0.94± 0.05
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tion are summarized in the following.

At least four jets are required within |η| < 2.5 and with pT > 50, 40, 30, and 30 GeV in the
muon channel, and pT > 50, 45, 35, and 30 GeV in the electron channel. Muons are required to
have transverse momentum larger than 26 GeV. In the muon channel no explicit requirement is
applied on the missing energy in the transverse plane, while Emiss

T has to be larger than 20 GeV
in the electron channel.

The M3 analysis uses a correction factor of (0.95 ± 0.02) [18, 19] to the simulated events to
reproduce the different b tagging efficiency in data and simulation, and a correction factor of
(1.11± 0.01± 0.12) [18, 19] to take into account the different probability that a light-quark or
gluon jet is identified as a b jet. These correction factors are determined following Refs. [18, 19].
No correction factors are applied in the M`b analysis, where these efficiencies are determined
from data.

Different strategies to take into account the multijet background are developed for the M`b and
M3 analyses. In the former, this background is reduced to a negligible level thanks to tighter
selection requirements on Emiss

T and on the transverse momenta of the third and fourth jets.
In the M3 analysis, looser selection cuts are chosen and the multijet background is considered
further in the analysis. Since MC simulation can not adequately reproduce the shape and nor-
malization of multijet events, this background is thus estimated from data.

Selected multijet events mostly consist of semileptonic heavy-flavour decays and, in the elec-
tron channel, events in which pions in jets are misidentified as electrons. Such events feature
lepton candidates not coming from W boson decay and thus not truly isolated. The shape of
the accepted multijet background is extracted from a sideband data sample where leptons have
large relative isolation, greater than 0.17 in the muon channel and 0.2 in the electron channel.
The data sample is selected such that it is rich in multijet background and poor in tt signal
and in other processes such as W+jets. The remaining tt, W+jets and Z+jets contamination is
removed using simulation. Other backgrounds, for example single top quark production, are
neglected because of their smaller contributions. The nominal multijet shape is taken as the
distribution measured in the sideband after subtracting the components described above.

The template fit is performed by using one single template for tt events (both for the tt signal
events and the other tt events passing the selection requirements) and individual templates for
each background process. The tt, single top quark, W+jets, and Z+jets templates, used in the
likelihood maximization, are taken from simulation, while the multijet template is estimated
from data as described above. The single top quark contribution is constrained by a Gaussian
distribution of 30% width to its expected value. The choice of the constraint has a negligible
effect on the final result. The normalization of the signal and background processes, including
the multijet background, is determined by the fit itself. The muon and electron channels are
combined with the BLUE method to obtain the quoted combined result.

The measured cross section with the M3 template fit is

σtt (combined) = 227.1± 2.5 (stat)± 19.1 (syst)± 6.0 (lumi) pb.

The M3 distributions in the muon and electron channels are shown in Fig. 3. Good agree-
ment is observed between data and the templates. The results are compatible with those of the
M`b analysis and are summarized in Tables 6 and 7. The main contributions to the systematic
uncertainties of the combined result are, in decreasing order: signal modeling (4.4%), factor-
ization and renormalization scales (2.9%), multijet background subtraction (2.2%), JES (2.1%),
PDF (1.6%), and b tagging efficiency and mistag rate (1.5%).
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Figure 3: Distributions of the M3 mass in the 8 TeV data, for the muon+jets (left) and elec-
tron+jets (right) channels, rescaled to the template likelihood fit results.

9 Summary
A measurement of the tt production cross section at

√
s = 8 TeV is presented, using the data

collected with the CMS detector and corresponding to an integrated luminosity of 19.6 fb−1.
The analysis is performed in the tt semileptonic decay channel with one muon or electron and
at least four jets in the final state with at least one b-tagged jet. The tt cross section is extracted
using a binned maximum-likelihood fit of templates from simulated events to the data sample.
The results from the two semileptonic channels are combined using the BLUE method.

Techniques based on control samples in data are used to determine the b tagging efficiency
and to calibrate the jet energy scale. These techniques allow for a better determination of the
corresponding systematic uncertainties, particularly for the JES, which is a dominant source of
experimental uncertainty.

In the kinematic range defined in the simulation with exactly one muon or electron with pT >
32 GeV and |η| < 2.1, one neutrino with pT > 40 GeV, and at least four jets with pT > 40 GeV
and |η| < 2.5, the measured visible tt cross section at

√
s = 8 TeV is 3.80 ± 0.06 (stat) ±

0.18 (syst)± 0.10 (lumi) pb.

Using the MADGRAPH generator for the extrapolation to the full phase space, the total tt cross
section at 8 TeV is 228.5± 3.8 (stat)± 13.7 (syst)± 6.0 (lumi) pb. The result of an alternative anal-
ysis, which makes use of the observable M3, is in good agreement with this value.

Furthermore, the analysis performed using data at
√

s = 7 TeV, yields a total cross section
measurement of 161.7± 6.0 (stat)± 12.0 (syst)± 3.6 (lumi) pb. The measured cross section ratio,
where a number of experimental uncertainties cancel out, is 1.43 ± 0.04 (stat) ± 0.07 (syst) ±
0.05 (lumi).

All measurements are in agreement with the NNLO theoretical predictions.
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G. Cappelloa, M. Chiorbolia ,b, S. Costaa ,b, A. Di Mattiaa, F. Giordanoa,b, R. Potenzaa ,b,
A. Tricomia,b, C. Tuvea ,b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
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L. Brianza, M.E. Dinardoa,b, S. Fiorendia ,b, S. Gennaia, R. Gerosaa,b, A. Ghezzia,b, P. Govonia ,b,
S. Malvezzia, R.A. Manzonia,b, B. Marzocchia,b ,2, D. Menascea, L. Moronia, M. Paganonia ,b,
D. Pedrinia, S. Ragazzia ,b, N. Redaellia, T. Tabarelli de Fatisa ,b



30 10 The CMS Collaboration
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INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsova,32, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia,
M.A. Cioccia ,32, R. Dell’Orsoa, S. Donatoa,c ,2, G. Fedi, L. Foàa,c†, A. Giassia, M.T. Grippoa ,32,
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32: Also at Università degli Studi di Siena, Siena, Italy
33: Also at Purdue University, West Lafayette, USA
34: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
35: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
36: Also at Consejo Nacional de Ciencia y Tecnologı́a, Mexico city, Mexico
37: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
38: Also at Institute for Nuclear Research, Moscow, Russia
39: Now at National Research Nuclear University ’Moscow Engineering Physics
Institute’ (MEPhI), Moscow, Russia
40: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
41: Also at California Institute of Technology, Pasadena, USA
42: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
43: Also at National Technical University of Athens, Athens, Greece
44: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
45: Also at National and Kapodistrian University of Athens, Athens, Greece
46: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
47: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
48: Also at Adiyaman University, Adiyaman, Turkey
49: Also at Mersin University, Mersin, Turkey
50: Also at Cag University, Mersin, Turkey
51: Also at Piri Reis University, Istanbul, Turkey
52: Also at Gaziosmanpasa University, Tokat, Turkey
53: Also at Ozyegin University, Istanbul, Turkey
54: Also at Izmir Institute of Technology, Izmir, Turkey
55: Also at Marmara University, Istanbul, Turkey
56: Also at Kafkas University, Kars, Turkey
57: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
58: Also at Yildiz Technical University, Istanbul, Turkey
59: Also at Hacettepe University, Ankara, Turkey
60: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
61: Also at School of Physics and Astronomy, University of Southampton, Southampton,



40 10 The CMS Collaboration

United Kingdom
62: Also at Instituto de Astrofı́sica de Canarias, La Laguna, Spain
63: Also at Utah Valley University, Orem, USA
64: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences,
Belgrade, Serbia
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